Home › EIDA Forum › Today’s Discussion and Announcements › CMRP in space technology testing network
- This topic is empty.
-
AuthorPosts
-
-
at #4296Tingting ZhangKeymaster
Space qualification facilities will test suitability of technology for use in space. The Centre for Medical Radiation Physics (CMRP) at The University of Wollongong (UOW) will contribute to a national network of facilities to test technology for use in space.
Space exploration missions, satellites and permanent space stations require advanced electronic instrumentation with the highest level of reliability. The physically extreme environments in space travel mean most commercially available components are unsuitable.
To ensure electronics used in space can withstand the harsh conditions, a system of certification has been developed. To obtain certification that they are “space ready”, components have to undergo a qualification process and a rigorous series of tests.
Until now, those testing facilities haven’t been available in Australia, but a new National Space Qualification Network (NSQN) will enable local space industry organisations – and those across the Indo-Pacific region – to undergo testing in Australia.
The NSQN has received $2.5 million in funding, announced Thursday 17 June, through a Space Infrastructure Fund grant from the Federal Department of Industry, Science, Energy, and Resources.
The NSQN is a six-partner consortium led by the Australian National University (ANU), and including UOW, Australian Nuclear Science and Technology Organisation (ANSTO), Steritech, Nova Systems and Saber Astronautics.
UOW will play a key role, providing a facility to test the reliability of electronic circuits and systems using laser. UOW’s contribution will be led by scientists from the Centre for Medical Radiation Physics (CMRP), which boasts an impressive track record of space industry research including collaborations with NASA and the European Space Agency.
Facility will replicate space environment
Associate Professor Marco Petasecca, CMRP Theme Leader, will lead the construction and operational aspects of the UOW NSQN node facility. He said the NSQN would provide companies with a set of facilities where all the environmental conditions in space can be replicated.
“The environment in space is so harsh,” Professor Petasecca said. “The gradient of temperature, for example, is extreme: it’s minus 270 degrees one moment and then suddenly, in close proximity to Earth, it may reach 250 degrees if exposed to sunlight. Commercial electronics are not designed to work in those conditions.
“Space craft launches also generates extreme conditions, such as vibrations and stress due to acoustics. Electronics can be severely damaged, mechanically collapsing under accelerations up to 10 Gs.”
UOW will design and develop laser-based instrumentation to test electronic components ability to withstand a type of radiation damage known as a Single Event Effect (SEE).
In space, SEEs are caused most often by cosmic rays composed of high energy particles (protons, helium ions and electrons) and can play havoc with electronics, causing enough damage to jeopardise a mission.
“This SEE is accidental, it happens because of the interaction of a single particle with a functioning electronic system, but it can be catastrophic,” Professor Petasecca said.
“Laser light can be used to assess the probability that an electronic system will fail during a mission, mimicking the effect a radiation particle would have.”
From: https://www.miragenews.com/cmrp-to-play-key-role-in-space-technology-580580/
-
-
AuthorPosts
- You must be logged in to reply to this topic.